Er-Ni (Erbium-Nickel)

H. Okamoto

The Er-Ni phase diagram in [Massalski2] was adopted from [1991Pan]. Figure 1 shows the Er-Ni phase diagram calculated by [1999Du] by optimizing available thermodynamic and phase boundary data. The difference between the diagrams of [1991Pan] and [1999Du] is not significant, but the diagram of [1999Du] based on a thermodynamic model is probably a better representation of the exiting phase boundary data. However, as pointed out by [1993Oka], it is unlikely that two compounds with similar compositions, such as Er_4Ni_{17} and Er_5Ni_{22} in Fig. 1, coexist over a wide temperature range. The thermodynamic model of [1999Du] apparently indicates instability of some compounds other than Er_5Ni_{22} . This feature is not reflected in Fig. 1. Therefore, further refinement of the thermodynamic model and the phase diagram may be helpful, particularly so with respect to the crystallographic relationship of $Er_{14}Ni_{17}$ and Er_5Ni_{22} .

The Er-Ni crystal structure data in Table 1 are adopted from [Massalski2] with additional information from [Pearson4].

References

- **1991Pan:** Y.Y. Pan and P. Nash: in *Phase Diagrams of Binary Nickel Alloys*, P. Nash, ed., ASM International, Materials Park, OH, pp. 101-06.
- **1993Oka:** H. Okamoto and T.B. Massalski: *J. Phase Equilibrium*, 1993, vol. 14 (3), pp. 316-35.
- **1999Du:** Z. Du, D. Wang, and W. Zhang, J. Alloys Compounds, 1999, vol. 284, pp. 206-12.

Fig. 1 Er-Ni phase diagram

Phase	Composition, at.% Ni	Pearson symbol	Space group	Strukturbericht designation	Prototype
(Er)	0	hP2	P6 ₃ /mmc	A3	Mg
Er ₃ Ni	25	oP16	Pnma	$D0_{11}$	Fe ₃ C
Er ₃ Ni ₂	40	hR15	$R\overline{3}$		
ErNi	50	oP8	Pnma	<i>B</i> 27	FeB
ErNi ₂	66.7	cF24	Fd3m	C15	Cu ₂ Mg
ErNi3	75	hR12	$R\overline{3}m$		Ni ₃ Pu
Er ₂ Ni ₇	77.8	hR54	$R\overline{3}m$		Co_7Gd_2
ErNi ₄	80	mC30	C2/m		Ni ₄ Pu
Er ₄ Ni ₁₇	81				
Er ₅ Ni ₂₂	81.5				
ErNi ₅	83.3	hP6	P6/mmm	$D2_d$	CaCu ₅
Er ₂ Ni ₁₇	89.5	hP38	$P6_3/mmc$		Ni ₁₇ Th ₂
(Ni)	100	cF4	$Fm\overline{3}m$	<i>A</i> 1	Cu

 Table 1
 Er-Ni crystal structure data